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Abstract—This paper describes a versatile asymmetric synthesis of highly enantiomerically enriched 12(S)-HETE via enzymatic
kinetic resolution of the key allylic alcohol synthon and the facile introduction of three alkyne units which were concomitantly
converted to three alkenes units. © 2002 Elsevier Science Ltd. All rights reserved.

Arachidonic acid is metabolized through the 12-lipoxy-
genase (12-LOX) and the cytochrome P-450 pathways
to produce 12(S)-hydroxyeicosatetraenoic acid (12(S)-
HETE, 1a) and 12(R)-hydroxyeicosatetraenoic acid
(12(R)-HETE, 1b), respectively. These two endogenous
substances have recently been discovered to be impli-
cated in a number of important biological activities
such as hypertension, thrombosis, metastasis of tumor
cell, angiogenesis, and inflammation.1 In particular, it
has recently been reported by us that both the capsa-
icin-activated channel of sensory neurons and the
cloned capsaicin receptor (VR1) are activated by the
eicosanoids including these metabolites.2 Accordingly,
the necessity of the extended studies on VR1 activation
by HETEs prompted us to synthesize a substantial
amount of HETEs and a variety of their structural
analogues including stereoisomer (Fig. 1).

The synthetic approaches toward 12-HETE have been
continuously studied since the first synthesis of 12-

HETE has been reported in 1978 by Corey group.3 In
particular, the enantioselective synthesis of 12-HETE
has recently been intensively investigated by a number
of research groups. However, we wished to develop a
concise and divergent synthetic route to both (R)- and
(S)-12-HETE because most of the reported syntheses
have employed the limited synthetic precursors such as
carbohydrates or glycidol as a chiral source.4 We report
herein a novel and efficient asymmetric synthesis of (S)-
and (R)-12-HETE via combination of enzymatic and
chemical processes.

Our synthetic strategy (Scheme 1) envisions (1) the
prompt access to both (S)- and (R)-allylic alcohol
synthons in a highly optically pure form utilizing enzy-
matic kinetic resolution, (2) the facile introduction of
three alkyne units as a perfect cis-olefin precursors, (3)
the single step generation of the requisite three cis-
olefins by P-2 nickel catalyzed reduction.

Our synthesis (Scheme 2) commenced with the prepara-
tion of the optically pure allylic alcohol (S)-5 as the
initial key intermediate. Monosilylation5 of the readily
available cis-1,4-butenediol followed by Swern
oxidation6 afforded the trans-olefinic aldehyde 7. Treat-
ment of the aldehyde 7 with propargylaluminium
sesquibromide provided the allylic alcohol 5 as a
racemic mixture.7 At this stage, we looked for an
enzymatic kinetic resolution of 5 for the optically active
(S)-5 because the enzymatic process turn out to be
superior to the chemical process in terms of high enan-

Figure 1. The key structure of 12-LOX metabolites and its
corresponding chiral synthon.
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Scheme 1. Retrosynthetic analysis of 12(S)-HETE.

Scheme 2. Reagents and conditions : (a) TBDPSCl, (iPr)2NEt, CH2Cl2, rt; (b) (COCl)2, DMSO, Et3N, CH2Cl2; (c) Al, HgCl2,
CH�CCH2Br, THF, −78°C, 80% for three steps; (d) Amano AK (80 mg/mmol), vinyl acetate (0.55 equiv.), t-BuOMe, 20°C.

tioselectivity and stereochemical diversity of the prod-
ucts. Moreover, this procedure is capable of providing
both enantiomers in highly optically pure form through
a single step operation. The kinetic resolution of the
racemic alcohol 5 was carried out in t-BuOMe at 20°C
using P. fluorescens lipase (Amano AK) as a biocatalyst
and vinyl acetate as an acyl donor.8 As we anticipated,
the enzyme-catalyzed kinetic resolution afforded the
considerably high enantiomeric excesses (>99.5%) for
both (S)-5 and 6 as well as the high chemical yields
(>49%) in short reaction time (4.5 h).9 It is noticeable
that the multi-gram quantities of the optically pure
allylic alcohol (S)-5 and (R)-5 could be procured by
this sequence.

The carbon chain elongation of (S)-5 followed by the
introduction of additional two alkyne units for the
intermediate 2 were quite straightforward. Protection of
the alcohol (S)-5 with TBDPSCl and then alkylation of
the terminal alkyne with bromopentane gave the bissilyl
ether 8 in 90% yield for two steps. Selective TBDPS
deprotection of 8 by HF–pyridine treatment10 and
TPAP oxidation11 of the resulting alcohol afforded the
�,�-unsaturated aldehyde 9. Introduction of the second
alkyne unit to 9 was executed by a facile conversion of
aldehyde to alkyne according to Corey–Fuchs proto-

col.12 For the introduction of the third alkyne unit, the
enyne 3 was coupled with the known propargylic bro-
mide 413 in the presence of copper to give triyne 2 in
90% yield.14,15 Finally, the requisite three cis-alkene
units of 12(S)-HETE was successfully elaborated by the
concomitant reduction of three alkynes of 2 to three
cis-alkenes. Initial attempts for the conversion of the
triyne 2 to the tetraene 10 under a variety of reduction
conditions did not provide the successful result. In most
cases, complete reduction of three alkynes to alkanes or
partial reduction of only one or two alkynes was
observed.16 However, partial hydrogenation of three
alkynes of 2 in the presence of P-2 nickel catalyst
afforded the desired tetraene 10.17 The perfectly selec-
tive partial reduction of all three alkynes to alkenes was
quite effective under these conditions. The synthesis of
12(S)-HETE was completed by the known two step
sequence (Scheme 3).4

In summary, a versatile and concise synthetic route to
12(S)-HETE has been developed. The key part of this
synthesis involves the enzymatic preparation of enan-
tiomerically pure allylic alcohols as a useful chiral
synthon for the synthesis of both 12(S) and 12(R)-
HETE as well as the related eicosanoids. In addition,
the facile and concomitant conversion of three alkynes
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Scheme 3. Reagents and conditions : (a) TBDPSCl, imidazole, DMF, rt, 91%; (b) n-BuLi, Br(CH2)4CH3, THF, HMPA, 0°C�rt,
82%; (c) HF–pyridine, THF/pyridine (2/1), 20°C, 80%; (d) TPAP, NMO, 4 A� MS, CH2Cl2, rt, 89%; (e) i. CBr4, PPh3, CH2Cl2,
ii. n-BuLi, THF, 0°C, 77%; (f) 4, n-Bu4NBr, CuI, K2CO3, DMF, −20°C�rt, 90%; (g) NaBH4, Ni(OAc)2·4H2O, H2,
H2NCH2CH2NH2, EtOH, rt, 69%; (h) Ref. 4.

to three alkenes using P-2 nickel catalyst is also
involved. This unique synthetic procedure which is
capable of providing both 12(S) and 12(R)-HETE in an
efficient and versatile way offers a useful synthetic route
to the biologically important eicosanoids.
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